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Section II. Summary of Proposal 
 

1. Innovation 
 
Currently, almost all information on the battlefield is relayed to command via radio and then 
processed by analysts throughout the chain of command. The drawn-out process of radioing 
information and having humans process it results in latency that can extend into hours–a process 
is too slow for the modern battlefield. Furthermore, plenty of critical information goes 
unreported, since it relies on the soldiers to judge situations where the information is useful, e.g. 
dehydration and early signs of injury. To solve these challenges, we will use lightweight, low-
energy sensors to detect events of interest and transmit this data to command, where software can 
filter and present the information to help extract actionable insights. 
 
The sensors themselves are attached to individual soldiers. They may include motion sensors, 
atmospheric sensors, and biometric sensors. From the raw data, the sensors use event detection to 
infer more practical information such as stress levels, rifle orientation, dehydration, etc. This 
information is delivered in real-time to commanders, who will be able to act on this information 
with minimal delay. In addition, combining data from multiple soldiers will yield further 
insights. We can triangulate enemies based on multiple rifle orientations and estimate 
ammunition supplies based on fired rounds. Finally, the data are stored so that missions can be 
replayed for training or learning, which allows us to learn things like where enemies are likely to 
be based out of (based on the location of prior engagements), and accurate details of what 
happened in a firefight for forensics or training. 
 

2. Results 
 
We intend to produce a suite of sensors for this purpose, starting with the rifle sensor, which can 
detect orientation and the exact time of each shot fired. Following the agile approach, we will 
produce working products at the end of each Phase.  
 
For the hardware: In Phase I, we will have a works-like prototype with commodity hardware 
ready for a pilot test. In Phase II, we will have a ruggedized version working with existing 
communication infrastructure, ready for field-testing. In Phase III, we will apply learnings from 
Phase I and II in producing biometric sensors. 
 
For the software: In Phase I, we will focus on the orientation and shot data streams, which alone 
are enough to provide low-latency information to commanders. In Phase II, we will automate the 
analysis of this information using custom classification algorithms (e.g. to infer duress, filtering 
for false positives). In Phase III, we will leverage the availability of multiple devices to do even 
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higher-level learning, for instance combining the orientations of two rifles pointed at the same 
object and triangulating the location of their mutual target. 
      

3. Technical Rationale 
 
Having information pushed and filtered by software rather than pulled and analyzed by humans 
alleviates two critical factors that impede commanders: transparency and latency.  
 
Much information on the battlefield goes unreported or gets lost. For instance, cases of 
dehydration and cases of concussion go unreported until the symptoms manifest, which by then 
is too late to mitigate without affecting the mission. As a result, commanders do not have a 
complete picture of what is going on and may have their missions impeded by these surprises. 
By bringing this information to the commander’s attention, they will be able to make better 
decisions, increasing mission effectiveness. 
 
Other information that sensors can report easily is difficult or impossible today. For instance, 
triangulating enemy locations based on two or more rifle orientations improves situational 
awareness, and should be more accurate than visually estimating location. The ability to replay 
missions by reviewing the stored data is a powerful way to reconstruct what happened for 
forensics or training purposes. Every round fired, rifle raised, elevated heartbeat and more are 
available to piece together past missions. 
 
Finally, latency is much improved with this system. When a soldier engages an enemy, his rifle 
will rise, and he may fire a round minutes before he finds time to radio for help. These precious 
seconds matter and can be used to call for backup or medical attention. In addition, commanders 
can know the signs of dehydration or fatigue before they impact the soldier and jeopardize the 
mission. With these sensors coupled with event detection, we can greatly reduce the decision 
loop time, which leads to a more agile, responsive military force. 
 

4. Technical Approach 
 
We will start with the rifle orientation sensor, which transmits orientation and shot times over the 
network, in Phase I. We will then ruggedize the sensor to make it field-testable in Phase II. 
Finally, in Phase III we will use our learnings from Phase I and II to produce networked 
biometric sensors. 
 

- Highly accurate attitude and Heading Reference System (AHRS) with commodity 
hardware, accounting for magnetic disturbances from the rifle and motion from gunshots. 
(Phase I) 
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- Create first-generation hardware. (Phase I) 
- Event detection from rifle orientation or raw motion to infer the soldier’s activity (idle, 

engaging an enemy, in duress). (Phase II) 
- Use existing military communication infrastructure. (Phase II) 
- Long 8hr+ battery life and ruggedized against impact, water, and heat. (Phase II) 
- Deriving insights from multiple sensors: enemy triangulation, supply estimation, high-

level combat overview (Phase III) 
- Developing hardware for atmospheric and biometric sensors (Phase III) 

  

5. Experience 
 
Chris Li completed his undergraduate research at the University of Southern California (Los 
Angeles), where he built hardware and software for autonomous robots. His primary emphasis is 
in distributed systems, which include work done in industry for Apple and eBay. His open-
source contributions include patches in Apache Hadoop as well as other widely downloaded 
projects (20k downloads). At Artemek, he is responsible for leading product development and 
engineering.  
 
Jun Hwang is an undergraduate student (on leave) in computer science at Boise State University 
(Boise), where he previously researched innovative methods to detect protein markers for 
innovative methods for cellular regeneration. Although studies are within life sciences, his 
primary emphasis is product management which he has done work at Apple and eBay and as an 
strategy/M&A/corporate development analyst (FT) at The Walt Disney Company. At Artemek, 
he is responsible for leading business, finance/operations.  
 
Laurent Itti received his M.S. degree in Image Processing from the Ecole Nationale Superieure 
des Telecommunications (Paris, France) in 1994, and his Ph.D. in Computation and Neural 
Systems from Caltech (Pasadena, California) in 2000. He is a Professor of Computer Science, 
Psychology, and Neuroscience at the University of Southern California. Dr. Itti has co-authored 
over 200 publications in peer-reviewed journals, books and conferences, three patents, and 
several open-source neuromorphic vision software toolkits. 
 

6. Cost and Schedule 
 
Phase I: Pilot testable product (8 months / $168,200) 

- Works-like prototypes built and mountable to rifle 
- Orientation sensor has highly-accurate AHRS 

 
Phase II: Field testable product (8 months / $256,800) 



 

 8 

- Orientation sensor detecting events such as raising of a rifle vs. resting behavior 
- Acts like prototype: custom board, 8+ hour battery life 
- Reliable communication over existing military infrastructure 
- Small manufacturing run (~100 devices) 

 
Phase III: Atmospheric / biometric sensors (8 months / $171,200) 

- Sensors capable of detecting stress levels of soldiers 
- Atmospheric sensors for heat, pressure, humidity 
- Multi-sensor insights (enemy triangulation, supply estimation) 

Section III. Detailed Proposal Information 
 

1. Statement of Work (SOW) 

a. Objectives 

We plan to enhance shared awareness in the military by combining networked data collection 
hardware with event classification software. Currently, most information is transmitted via radio 
to human analysts, where it is passed up the chain of command and collated along with other 
intelligence, surveillance and reconnaissance (ISR), until a decision can be made. Thereafter, the 
decision is passed down through the various levels until a soldier can take action (respond).  
 

i. Current State of Technology 
 
Currently, the military transmits GPS location through Blue Force Tracking (BFT), which 
provides military commanders and forces a unified view of friendly forces’ locations. However, 
much of the information on the battlefield is contextual, such as the presence of enemies and the 
health of individual soldiers, and this information is still radioed in. Current users of the BFT 
systems include the United States Army, the United States Marines Corps, the United States Air 
Force, the United States Navy ground-based expeditionary forces (i.e., United States Naval 
Special Warfare Command (NSWC) and Navy Expeditionary Combat Command (NECC) units), 
and the United Kingdom. Furthermore, BFT does not have the capability to track individual 
soldiers real-time. 
 
The Integrated Blast Effects Sensor Suite (I-BESS) program is a sensor system which collects 
acceleration and pressure data. It is designed to detect concussions and other trauma that a 
soldier might not notice when returning to base. However, the I-BESS program is limited in 
scope to blast detection, and does not transmit data in real-time, which does not solve the issue of 
battlefield latency. 
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Individual Gunshot Detectors (IGD) are soldier-issued versions of the Boomerang (a gunfire 
locator). It detects the location of enemy snipers or soldiers and provides the information to 
soldiers. Our gunshot detector will detect shots only from the rifle on which it is mounted, which 
is an entirely different set of information. As for triangulation of enemies, boomerang is best 
suited for quick instances where enemies are firing gunshots, but will not help with locating 
enemies who are not firing rounds within range of the sensor. Our proposed system will allow 
soldiers to cooperatively tag targets or general locations with their rifles. 
 

ii. General Description of Tasks 
 
Highly accurate Attitude and Heading Reference System (AHRS)  
These systems, while typically known for their usage on aircraft, will allow our rifle sensor to 
track its orientation over time. We will be using commodity hardware, since we plan on 
producing the device at a cost-effective price. Where our AHRS departs from the standard 
aircraft software is that it will need to track accurately through gunshots, which produce large 
impulses in acceleration. In addition, it will need to track correctly when mounted on a rifle, 
which will affect the compass readings. This will be done by the USC iLab in Phase I. 
 
Infer soldier activity from motion data 
While rifle orientation is useful, ultimately context is more important. For instance, if the soldier 
is pointing the rifle towards the ground, they are probably idle, but if raising the rifle, they may 
be in duress. In addition to these tasks, we would also like to know things like if the soldier is 
running, or if the soldier is aiming. Finally, these insights can be combined with gunshot 
detection to further improve its efficacy. This will be done by the iLab in Phase II. 
 
Physical design of product 
In Phase I, we will have works-like prototypes with 3D printed enclosures designed for rapid 
iteration. In Phase II we will begin integrating hardware from Phase I into ruggedized cases 
ready for field-testing. We expect the battery to last beyond what typical missions require, and to 
be either field-swappable or rechargeable back at base. This will be done by Artemek in 
collaboration with contracted industrial designers, design firms and contract manufacturers. 
 
For communication: In Phase I, we will use off-the-shelf consumer Bluetooth radios to transmit 
data, which will be sufficient for a pilot test. However, in order to do a field test, we will need to 
interoperate with existing military infrastructure. This will be done by Artemek in Phase II. 
 
Multi-sensor insights 
By combining sensor data from multiple rifle sensor devices, we can learn even more about the 
battlefield. One critical capability is enemy triangulation. If we have two or more soldiers aim at 
a single target, and we know their location and the direction of their rifles, we can then 
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triangulate the location of their target. Another capability is supply estimation. By counting the 
number of rounds fired, we can determine which areas are combat-heavy and will likely need 
ammunition to be resupplied. This will be done by the iLab in Phase III. 
 
Biometric/atmospheric sensors 
From our learnings during Phase I and II, we will develop biometric sensors and atmospheric 
sensors with our existing framework. The atmospheric sensors can be used to determine things 
like elevated risk for dehydration, elevation (for improving GPS accuracy), and humidity (for 
calibrating weapons). The biometric sensors can determine stress, injury, or dehydration. We 
choose to do this in Phase III to mitigate risk–by now we will have learned from our experiences 
in making the rifle sensor. This will be done by Artemek. 
 

b. Technical Rationale and Approach: 

Highly Accurate Altitude and Heading Reference System (AHRS)  
 
Rationale and Background. We propose to use solid-state microelectronics sensors (MEMS) 
mounted on a rifle, which will provide 9 independent measurements: linear acceleration in X, Y, 
Z, rotational velocity about X, Y, Z, and magnetic field direction in X, Y, Z. The first six 
(acceleration and gyroscopic rotation) can be integrated over time to track position and 3D pose 
(aka attitude) of the sensor. However, because the sensors are noisy, integration over extended 
time periods give rise to accumulated errors. Thus, the estimate of pose obtained through 
successive integrations of acceleration and rotational velocity drifts over time. To correct drift, 
absolute sensing is necessary as it allows the sensor to recalibrate its absolute zero. One could 
use GPS (typically, for high-motion applications such as aircraft, as GPS is not very accurate), or 
another common approach is to use a 3D compass (magnetometer). Integration of all 9 
measurements is carried through a relatively sophisticated algorithm (e.g., extended Kalman 
filter) that also filters out noise to give rise to a real-time estimate of the 3D pose of the sensor. 
Thus, some computational power is required in addition to the sensing elements themselves. 
Several manufacturers already propose high-end AHRS systems, sometimes with additional 
features such as temperature compensation to maximize accuracy. These sensors, however, tend 
to be bulky, power-hungry, and, most importantly here, expensive (e.g., around $2,000 for 
Microstrain AHRS units). While this may be acceptable on large, expensive equipment (e.g., an 
aircraft), we here propose to explore a low-cost, low-power, yet accurate solution for rifle-
mounted AHRS. 
 
Preliminary results: We have built a prototype using the Invensense MPU-9150 as the IMU and 
a Teensy 3.0 to transmit data serially over USB. It streams data at 1kHz. No specific effort was 
mode to optimize for power consumption at this stage (see details in later section on physical 
design) 
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Approach: Specifically, we will save on hardware costs by using ARM microprocessors, which 
are both cost-effective and powerful. Commercial MEMS IMUs such as the Invensense 9600 
MPU are being increasingly integrated into consumer smartphones such as the iPhone and many 
Android phones. Though less accurate than their high-end counterparts, we can tolerate small 
positional errors in our application (that autonomous aircraft that the expensive sensors are 
designed for, cannot).  
 
By using these sensors and limiting their update rates, we can lower power consumption. As 
these devices will be mission critical, they will need to last the duration of the mission and 
longer. Soldiers on the field often carry 3V Lithium-Ion batteries for other devices, and one 
option would be making the battery swappable in-field. Another would be to have inductive or 
contact charging back at base, as radios currently have. Though there are concerns with the 
volatility of Lithium-Ion batteries near soldier’s bodies, we believe that the distance due to being 
mounted on a rifle alleviates these concerns. We will also explore safer Lithium Ferrous Oxide 
(LiFe) batteries. 
 
Ferromagnetic interference and calibration. One complication comes from the fact that the 
magnetometer measurements are affected by the nearby presence of any ferromagnetic material 
or large electrical currents. Typically, then, it is recommended that the compass sensor be 
mounted as far away as possible from those (e.g., on a non-ferromagnetic mast that sticks out of 
a vehicle). While electrical currents are likely not problematic here, we need to mount the sensor 
very close to the metallic rifle, and sticking out significantly is not an option as it could severely 
impact rifle usability. It is unlikely that we can fully account for magnetic distortions either 
through closed-form mathematical analysis or through simulation (given, e.g., a 3D model of the 
small arms being used). Hence, we will instead develop machine vision and machine learning 
tools to learn the distortions induced by a specific rifle, during a factory calibration phase. The 
most realistic situation is when a person is holding the rifle and also wearing/carrying the typical 
gear the eventual end-user would. Thus, we will replicate this situation in the lab using actors, 
and we will film the actors as they manipulate the rifle in various ways. Using machine vision 
software, we will extract the true pose of the rifle at any time. This will then be compared to the 
raw, uncalibrated measurements obtained from our rifle-mounted AHRS system, and the 
difference will be used to calibrate the sensors: 
 

- we will use a Kinect (RGB + depth) sensor to film the actor and rifle at 30 frames/s. This 
sensor yields not only full-color video, but also a depth map, which makes it easy to 
detect the rifle and to accurately identify its pose. We have extensive experience with 
these RGB-D sensors and the associated data processing. 

- before a calibration session, the Kinect will be placed in a fixed position, and true 
(reference) magnetic field will be measured in the arena using a highly accurate compass. 
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- the actor will then enter the calibration arena and take various poses, making sure to 
cover the full range of possible rotations of the rifle. To ensure highly accurate 
synchronization between the pose seen by the Kinect and the measurements of the 
sensors on the rifle, we will blink a light on the sensors using a particular binary pattern 
of blinking. As this pattern is observed in the Kinect video, it will be used to recover 
accurate clock synchronization between the Kinect and the rifle sensors. The rifle will be 
detected in the RGB-D pointcloud data, which should be achievable with high accuracy 
in most, but the most severely occluded poses given that a complete 3D model of the 
exact rifle will be available (for example, scanned beforehand using the Kinect and under 
no-occlusion, ideal-lighting conditions). In case we encounter difficulties in localizing the 
rifle in the pointcloud data, we will add visible markers to the rifle to help with initial 
location and pose estimation, then using the 3D data to refine this estimate and accurately 
match the 3D model of the rifle to the pointcloud data. If occlusions make detecting the 
rifle impossible in some configurations, we may add one or more extra Kinect devices at 
different locations around the actor. 

- we will start with simple regression between reference magnetic field, plus the pose 
measured by Kinect, and pose measured by our rifle-mounted sensors. This will yield the 
sensor calibration. If regression is not sufficiently accurate, we will explore more 
sophisticated methods (e.g., K nearest neighbors, Locally Linear Embedding (Roweis & 
Saul, 2000)). 

- because each MEMS sensor potentially needs to be calibrated differently, some amount 
of calibration likely will be necessary for every unit produced. We propose here to look 
for a decomposition of the calibration function into two sub-parts: 1) correction for 
distortions due to the metallic rifle, 2) compass calibration to true North. Likely 1) will be 
similar from one rifle to another, which could then, after we learn it once through the full 
calibration procedure just outlined, apply to other rifles. Then, 2) might become a much 
simpler calibration that can be done by the end-user shortly after purchase of the 
equipment (e.g., similar to how new cars equipped with a compass ask you to drive on a 
few tight circles to calibrate the compass). Thus, our last research task here will be to find 
the best way to split the full calibration into these two sub-parts. 

 
Special considerations for gunshot detection and other strong transient accelerations.  
 
Unlike typical AHRS design, one complication for the proposed system is that it will be 
subjected to deliberate strong accelerations, for example, each time a shot is fired, or the rifle is 
dropped or otherwise colliding with other hard objects or surfaces. Since the core AHRS 
algorithm to convert raw sensor measurements into pose is a filter, one needs to pay special 
attention to the operation of this filter across sudden transient acceleration. For example, 
Pourtakdoust & Ghanbarpour (2007) reported a modified, adaptive unscented Kalman filter to 
explicitly account for high transient accelerations, although in their AUV application those 
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accelerations were still likely smaller than what will be experienced in our application. The 
research tasks here are: 
 

- measure raw rifle-mounted sensor data during shots, drops, and collisions. This will 
guide the choice of MEMS sensor (range of acceptable accelerations) and will allow us to 
build typical profiles of acceleration during these events. 

- develop a continuous-discrete unscented Kalman filter to account for two possible 
regimens of operation (carrying vs. shot/drop/collision) and switching between the two. 
Possibly, we will need to create different regimens or models for shots vs. drops vs. 
collisions. 

- test using out Kinect-based test arena how well the new AHRS algorithm is able to 
maintain accurate pose information across shots, drops and other collisions. 

 

Inferring Soldier Activity From Motion Data 
 
Rationale. We hypothesize that machine learning applied to streaming accelerometer, as well as 
possibly visual, audio or other streaming sensor data, can successfully decode user activity, 
situation and intentions. This will allow the system to constantly report and possibly adapt to user 
state and intent, making it more responsive and “aware” of user situation. This is part of our effort 
to avoid bombarding commanders with large amounts of irrelevant sensor data, delivering instead 
context-aware, actionable information about each soldier in theater. 
 
Background: Decoding activity, cognitive state, and user intentions.  In one system, Peters and 
Itti (2008) monitored eye movements while individuals played video games and were able to 
predict from the eye movement patterns, up to 2 seconds in advance, when the player was about 
to pull the trigger in a flight combat game or to shift gears in a car racing game. In further research, 
we have been able to predict, highly significantly above chance, which object a user will look at 
next in driving and puzzle-type games, through joint monitoring of eye movements, video frames, 
and joystick actions (Borji, Sihite & Itti 2012a; 2012b). When eye-tracking is not available, studies 
on activity classification have used inertial measurement units (IMUs; i.e., accelerometers, 
gyroscopes), possibly combined with pressure sensors (Zhang & Tang 2012)  or a camera (Spriggs 
et al 2009), placed on various body parts: thigh, waist, forearm, chest, knee, ankle, neck, foot 
(Zhang & Tang 2012), or head (Bao & Intille 2004; Yang & Hsu 2010). Machine learning 
algorithms identify patterns in the sensor data streams, giving rise to classification into different 
activities. Most studies thus far have used small databases, from five to nine activities. Five 
activities were successfully recognized by a wrist-worn accelerometer (94.13% correct; 
Chernbumroong et al 2011) and a waist-worn accelerometer (99.5%, Lee et al 2009). Six activities 
also yielded good results with a pocket-worn (91.7%, Kwapisz et al 2010) or a belt-worn (82.8%, 
Zhang et al 2010) accelerometer. An IMU on the front hip could differentiate between nine 
activities (90%, Zhang & Sawchuk 2011). Distributed inertial sensor networks used up to six 
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sensor modules on different body parts (Yang & Hsu 2010), scoring 84% accuracy on 20 different 
activities (Bao & Intille 2004). An inertial sensor network combined with a camera yielded 61% 
on 29 kitchen activities (Spriggs et al 2009). We believe that similar machine learning and pattern 
recognition techniques can be leveraged here to achieve a new level of activity decoding and 
automated situation awareness. 
 
Preliminary results. In a pilot project with Google’s “Project Glass” team, we have been able to 
successfully decode 20 daily activities by monitoring, over time, data streamed by a head-mounted 
9-degrees-of-freedom inertial measurement unit (IMU; 3 accelerometers, 3 gyroscopes, and 3 
magnetometers; Fig. 1). We achieved over 80% correct classification, highly significantly above 
chance level of 5% correct classification. 
    

 
Fig. 1. (left) Snapshots from 20 daily activities of an individual. (right) Confusion matrix of activity decoding from 
head-mounted inertial data. Overall accuracy was 80.3% (Windau & Itti, 2013). 
 
Technical approach. We will develop new algorithms to decode what soldiers are doing or 
intending to do, first based on IMU data, then possibly adding other sensors including visual or 
audio. Activities of interest here include:  
Stress Roles: 

• Relaxed with weapon lowered 
• Relaxed with weapon raised (soldier using rifle to point, or accidentally raising rifle) 
• In duress with weapon raised 
• In duress with weapon lowered (soldier firing from top of building for instance) 

Physical Activities: 
• Running 
• Walking 
• Crawling 
• Completely immobile  
• Taking cover/being fired upon 
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Urban Combat: 
• Climbing Stairs 
• Climbing Walls 
• Breaking a door 
• Throwing a grenade 
• Sweeping a room 

Marksmanship: 
• Long-distance Aiming 
• Short-distance Aiming (CQB) 
• Suppressing fire (non aiming) 
• Reloading 

 
The proposed general architecture can be structured in three major processing steps (Fig. 2). Step 
1 prefilters sensor data and transforms it from a local dynamic coordinate system into a stable 
normalized coordinate system. Step 2 handles the feature extraction for IMU data (and possibly 
additional camera or other sensor data). IMU data is segmented into windows, followed by the 
extraction of statistical and physical features from each window. For each image in the camera 
(or audio, or other sensor) data, one statistical summary or so-called “GIST” feature vector is 
calculated (Siagian & Itti 2007). Step 3 is performing classification of activities/intentions by 
using a network of multiple classifiers. The result is a list of activities with assigned 
probabilities. 
 

 
Fig. 2. General proposed system architecture. In Phase I, we will focus on IMU data, possibly adding camera, 
auditory and other sensors in later phases. 
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Step 1: transformation. It is important for classifiers to perform robustly when classifying 
activities such as walking or running to extract features that are not affected by the exact orientation 
of the weapon or the exact way a person is holding it. When a person performs a movement, the 
local sensor coordinate system will change accordingly. The key idea of our approach is to keep 
the sensor data in a static coordinate system that will stay stable even when the weapon moves (for 
decoding of activities related to soldier motion), in addition to measuring absolute weapon attitude 
(for decoding that involve raising or lowering the weapon). Thus, the sensor data needs to be 
transformed from its dynamic local sensor coordinate system into a normalized coordinate system. 
This normalized coordinate system is defined as the x-axis pointing out of the weapon, the y-axis 
points perpendicularly to the right and the z-axis points vertically down. Here we will use a simple 
matrix transformation as described previously in Windau & Itti (2013). Fig. 3 shows examples of 
accelerometer data before / after transformation. 
 

 
Fig. 3. Accelerometer data before and after transformation into a stable coordinate system. While the raw data in 
local coordinate system shows large variations here linked to adjusting the pose of the sensor (e.g., adjusting the 
manner in which the soldier is carrying a weapon), those are irrelevant to decoding activities such as walking vs. 
running. The transformed data in world coordinate system eliminate these, making the decoding of walking vs. running 
more robust. 
 
 
Step 2: Features. Initially, for simplicity we propose to use 22 simple features extracted from 
inertial sensor data (Fig. 4). Seven features (energy, periodicity) are created by transforming 
sensor data into the frequency spectrum via FFT (Fast Fourier Transformation). 
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Fig 4: Initial set of features computed from IMU data streams. This will be replaced in later years by an optimal set 
of features learned using a dictionary learning techniques. 
 
Mean is used to measure the average acceleration and angular velocity for each sensor axis over 
one window length. Mean is larger for activities with strong body motions. Variance describes 
how far acceleration and angular velocity are spread out along an axis. Fast and wide motions are 
larger. Movement Intensity (MI) specifies the intensity of motions. Mean and variance of MI are 
calculated over one window (Zhang & Sawchuk 2011).  
 

 
 
Energy describes the motion quantity (Zhang & Sawchuk 2011). Ei measures the energy for each 
axis; E is the energy over the entire system.  
 

 
 
Parameters are N (number of samples per window length), Mai (discrete FFT component 
magnitude of acceleration along the axis i), f (frequency), and F (maximal frequency of window). 
Energy Expenditure (EE) is also known as the normalized signal magnitude area [8] and 
describes the amount of energy used for an activity. T is specified as the time of one window. 
Periodicity (fpeak) detects recurring motions. Fpeak determines the highest dominant frequency for 
an axis i. Parameters are Mwi (discrete FFT component magnitude of angular velocity along the 
axis i), c (minimum required magnitude threshold) to avoid noise peaks. 
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In later phases, we proposed to use dictionary learning to create an optimal set of features from 
training data. In this approach, we will collect data from all the desired activities. We will segment 
the data into small windows as done previously (e.g., 9 IMU measurements x 50 samples). We 
will then compute a sparse set of basic functions that can best represent these windows, for 
example using the Lasso algorithm (or any other sparse dictionary learning approach; Olshausen 
& Field 1996; Friedman et al 2008). A window of data collected during testing will then be 
approximated as a linear combination of the basic functions. The coefficients of this linear 
combination will be the new feature vector used for decoding. With this approach we expect that 
some of the basic functions will capture some prototypical “elementary action primitives”, such as 
putting the left foot down while walking. Thus, the decoder will be able to work with these 
elementary action primitives as opposed to the semantically poorer statistical and physical features 
described above. Such an approach has proven quite effective in computer vision, where 
elementary pieces of objects can be learned in a similar manner from many training image patches, 
then allowing an object recognition algorithm to reason about assemblages of these pieces as 
opposed to raw pixel data (Zhu et al 2010a; 2010b). 
 
Step 3: Activity and intention classification / decoding. In a first simple approach, we propose 
to use a Naive Bayes classifier followed by a Hidden Markov model (HMM) to decode and filter 
activities over time. We will then investigate more complex Dynamic Bayesian Networks, shown 
in our previous eye movement research to provide superior performance, as well as supporting 
integration of multiple, multimodal data streams (Borji et al 2012a; 2012b). 
 
The Naive Bayes + HMM approach has been described in Windau & Itti (2013) and has yielded 
robust performance on decoding activities using a head-mounted IMU. Here we will extend this 
approach to the different types of activities considered in this proposal. 
 
We will then develop a real-time mathematical framework to combine information from all 
available sensors (first, just IMU, then possibly adding new sensors). The sensor data streams will 
be fed to a dynamic Bayesian network to infer the (hidden-variable) cognitive state of the user 
along several simple dimensions (e.g., walking, crouching, shooting). These inferred variables will 
provide awareness of user state and intentions. 

 

 
Fig. 5: (a) Dynamic Bayesian network (DBN) framework (see text for notations). (b) Illustrative prototype from 
previous work, using camera and eye-tracking features in a driving scenario (eye-tracking will here be replaced by 
inertial data). From left to right: Input video and current eye position of a driver (red circle, on a traffic light); 
predicted eye position (blue square) by a trivial model that just averages all previous eye positions; and by a model 
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that only uses bottom-up saliency cues (both here fail to capture that the driver is monitoring the traffic light); 
predicted eye position by the DBN of (a), on average significantly closer to the subsequent eye movement of the driver 
(Borji et al., 2012a; 2012b). The DBN also predicts probabilities for 8 possible “situations” (driving straight, in a 
left turn, in a right turn, waiting at a red light, etc), over 90% correct in a leave-one-out test with 11 subjects (train 
on 10, test on the 11th). 

 
We will use the Dynamic Bayesian Network (DBN) framework to provide a principled way to 
combine the feature inputs into inferred state variables. We pose the problem as follows. Low-
level feature detection algorithms will extract features fti in real-time from inertial, and possibly 
other data streams. From these features, a DBN will iteratively update an internal estimate of the 
(hidden variable) user state, Yt, and then predict in real-time the probability Xt for the next user 
action (this prediction will thus be a probability vector over all known actions). The main difficulty 
in this work is in determining the state space for Yt. At first, we will use clustering methods to 
determine it from training data. For example, using a simple k-means clustering, we will be able 
to investigate how increasing the dimensionality of this state space may improve subsequent 
decoding performance. As the relationship between fti and Yt may not be as simple as shown in 
Fig. 5, we will then investigate structure-learning methods to derive a possibly more complex 
graphical model than the one shown in Fig. 5. This DBN approach will hence require that we study 
from a theoretical standpoint how to best structure the graphical model which expresses the 
conditional dependencies (and lack thereof) between features, hidden variables, and output 
variables (Fig. 5). The simple DBN of Fig. 5 is likely to become too limited and a more elaborate 
network with additional intermediary nodes will likely be required. The next challenge is inference 
in the presence of noisy sensors and hidden (non-measurable) state variables, which we will solve 
by designing a Bayes filter, which we will implement as a Particle Filter for computational reasons, 
similar to our previous robotics work (Siagian & Itti, 2009). Note that while this inference may 
seem intractable, we have demonstrated ways in which it can efficiently be achieved (Borji et al., 
2012a; 2012b). 
 

Physical Design and Electronics 
 
Our hardware design utilizes both off-the-shelf components and custom-made ones to speed 
development time (Fig. 6). Our existing and planned hardware revisions follow: 
 
Phase 0 (pre-DARPA) Off The Shelf: used to develop proof of concepts and initial shot 
detection. Electronics were handled by the Texas Instruments SensorTag and the enclosure was 
3D printed using a MakerBot Replicator Z18. The sensor attaches to the Picatinny rail of any 
small arms (rifle, SMG or pistol). 
 



 

 20 

    
Fig 6: (left) the custom enclosure for the TI SensorTag (right) the enclosure mounted on the Picatinny rail of a rifle 
(standard M4 “style” Carbine used by most infantry type soldier). 
 
Phase 0 (pre-DARPA) Custom: used to develop on custom hardware, though larger, the custom 
hardware is more powerful. The device samples at kilohertz rates and transmits a raw byte 
stream over Bluetooth. Electronics are off-the-shelf, and use wire-wrapped assembly for 
flexibility. They include the Teensy 3.0 ARM 96MHz mpu, Invensense MPU-9150 9DOF IMU, 
Analog Pressure Sensor, BlueSMiRF Bluetooth 3.0 wireless board, and a 3.7V LiPo battery 
pack. 
 
 

 
Fig 7: One revision of wire-wrapped custom prototypes in its 3D printed case. 
 
Phase I Off The Shelf: We plan to use high-end IMUs (such as those made by Microstrain or 
Xens) as a reference to begin development of data visualization and user-facing software while 
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the iLab works on using custom hardware. This will let us get started immediately without being 
blocked on progress of hardware. 
 
Phase I Custom: We will produce other wire-wrapped boards so we can begin development of 
the AHRS software immediately. While that continues, we will design and manufacture PCBs of 
that design so we can make more of them. We typically order PCBs from contract manufacturers 
and assemble them in the iLab, which is equipped with soldering/reflow stations and a P&P 
machine. 
 
Phase II Custom: In phase II, we will start back at wire-wrapped boards if we need to swap our 
communication chipset out, depending on what existing technology we choose for wireless 
communication in-field. After we pick and prototype, we will produce another PCB, 
coordinating with industrial designers on the final form of the device. Special consideration will 
be given to the antenna, so as to allow maximal range and efficiency when placed near a large 
ferrous body (the rifle). 
 
Phase III Off The Shelf: We will our next round of biometric and atmospheric sensors with off 
the shelf hardware once again to allow our software efforts to advance unimpeded. We have 
already identified the TI SensorTag as a good candidate, for its low energy and environmental 
sensing’s tolerance of low sampling rates. In addition, we will make use of existing commercial 
heart rate monitors (such as portable ones made for measuring heart rates of runners, like the 
Polar Bluetooth heart rate monitor). 
 
Phase III Custom: While these sensors will get us started, they will likely be unfit for use on the 
battlefield due to the unique circumstances soldiers face. It will be our task to` create new 
sensors or contract new sensors for future deployment. 
 

Multi-Sensor Insights 
 
The proposed Dynamic Bayesian Network approach naturally extends to scenarios where 
multiple sensors are analyzed jointly. In such case, we will modify the structure of the DBN to 
add nodes that represent possible joint intentions of a team, and that influence sub-networks, one 
for each team member, similar to those used to infer activity and intentions for a single 
individual. 
 
Learning for such a more complex network would be significantly more involved, but likely can 
be split into two parts: first learn the DBN associated with each individual, and then fix it; 
second, only learn the top-level DBN that links the different individuals together. 
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Note that this extension to teams is simple when the team has a known, fixed size (or maximum 
size, as removing members from a team should not affect the functioning of the DBN). Here, we 
assume that the maximum size of a team will be known in advance and will remain modest (e.g., 
less than 100), as larger teams would typically split into sub-teams in a hierarchical manner, 
thereby prompting a hierarchical DBN. This approach fits well in the current command structure 
of the Army, for instance, which is organized into squads of 4-10 soldiers, platoons of 16-40 
soldiers, companies of 100-200 soldiers, and so on, with an associated commander at each rank. 
 
Activities to decode here include engagement of a squad, platoon or company, and estimation of 
their objective or objectives. In a manner similar to using the DBN approach to predict where in 
space one might look next while driving (Fig. 5), one of the outputs of the team DBN will be a 
spatial map that highlights the joint interest of the team over particular locations in space (an 
extension to simply triangulating a joint target from multiple rifles orientations). This approach 
has proven particularly effective in decoding locations of high interest or high value for future 
eye movements based on very noisy eye movement input data (Borji et al., 2012b; Fig. 5). In 
addition to this probabilistic decoding of team-based intentions, simpler metrics will be 
accumulated at the team level, such as depletion of ammunition based simply on counting the 
number of shots fired. 
 

Biometric/Atmospheric sensors 
 
Solid state atmospheric sensors such as humidity detectors, temperature detectors, and pressure 
sensors are cheap and low energy. The low update rates required (once every few seconds) 
means low power and longer battery life. In fact, a few of the atmospheric sensors (temperature, 
pressure) will already be present in the Phase I sensor. If atmospheric sensing is important to 
DARPA, we can integrate them into the rifle sensor and enable their use in Phase III with over-
the-air firmware upgrades. 
 
Our strategy for biometric sensors is to focus on off-the-shelf technology for the hardware and 
utilize their sensor outputs directly in our software for multi-sensor insights. In recent years, 
commercial biometric sensors have taken off, with sensors such as Bluetooth heart rate 
monitoring bands and stress detectors that detect the electrical conductance of skin. These 
sensors exist alone, but by networking them into our system, we can learn even more through 
correlations.  

c. Exit Criteria 

Phase I: Produce a works-like device that can be demonstrated in a pilot test by military 
commanders at the different levels. The system will: 
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• Detect and transmit gunshot and orientation 
• Provide graphical UI for commanders (brigade and below) 

 
Phase II: Produce a looks-like device that is ready for field-testing in realistic conditions. The 
device will be heat, shock, and water tolerant. Device should communicate over a channel that is 
in use in the field today. The device will: 

• Infer soldier activity from motion data 
• Communicate in a bandwidth constrained environment over military infrastructure 

 
Phase III: Combine information from multiple sensors (option, does not depend on Phase II) 

• Multi-sensor insights for firearm sensor 
• Develop new biometric/atmospheric sensors as works-like prototypes 

 

d. Deliverables 

We expect the following deliverables: 

- Rifle sensor hardware in Phase I and II 
- Biometric and atmospheric sensors in Phase III 
- New techniques to track firearms in 3D space 
- New classification algorithms to classify activities from biometric sensors 
- New software for aggregating and visualizing relevant information for commanders 
- New algorithms for aggregating sensory data at multiple levels: e.g. squad, platoon, 

company, etc. 
- A system for storing raw sensor streams into data warehouses for later use 

2. Risk and Risk Reduction 

Risk Area: Existing communications may not be ready for our technology. The systems might 
not use battery friendly protocols or wavelengths, or the data rates may be too slow, or too 
intermittent. 
 
Risk Reduction: To get started quickly, we will focus on Bluetooth initially. We chose 
Bluetooth since there is industry movement towards standardizing Bluetooth as a local wireless 
protocol (such as the Motorola XTS or APX series radio used in law enforcement). From here, 
we will evaluate whether adoption of Bluetooth enabled radios is imminent, or if we should 
adopt one of the many other communication technologies available on the battlefield, such as 
Wi-Fi. 
 
Slow data rates are another concern. The amount of bandwidth available is measured in sub-
kilobit levels today. To address this, we take the following approaches:  
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1. We do much of the processing device-side, so that we transfer only filtered data 
2. We further filter on the device side so that we aren’t always transmitting (if we detect the 

soldier is idle, we will transmit at a slower rate 
3. We will save data to the device for offline access in the event the network is too busy. 

Some activities are more important than others (soldier in duress vs. soldier idle), and 
will take precedence during network congestion. This will ensure that data is still 
available for forensics or training purposes but doesn’t necessarily congest the network. 

 
Risk Area: Battery technology will not allow the device to last a reasonable amount of time. 
 
Risk Reduction: One solution is to have the battery be swappable, as some devices today are. 
Soldiers already carry spare batteries on the battlefield. Another solution is to slow the data 
update rates or batch non-critical data updates so the radio chipset can sleep. 
 

3. Expected Results 

a. Transferable Technology and Transfer Paths 

In Phase I, we will deliver a working rifle orientation and shot sensor and associated user 
interfaces for pilot testing for the military. In Phase II, we will make our prototype into a field-
testable device for the military. In Phase III we will produce pilot testable biometric and 
atmospheric sensors. 

Artemek will produce and sell its shared awareness system to the military, including device 
manufacturing and software licensing/integration. To do this, we will be partnering with 
domestic contract manufacturers and hiring in-house engineers. 

The iLab will be publishing papers and contributing their work to the research community. 

b. Proprietary Claims 

Artemek claims the following intellectual property: 
- Existing devices made by Artemek 
- Existing shot detection systems previously done by Artemek 
- Existing AHRS systems previously done by Artemek 
- Any prior art (diagrams, etc.) done by Artemek as demonstrated in its provisional patents 

or documentation 
 
Patent application information: 
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Application 
Number 

Inventor Assignee Title Filing Date 

61/846,487 Chris Li, 
Jun Hwang 

Artemek FIREARM TRAINING 
SYSTEM FOR SHOOTING 
ACCURACY 

July 15th, 2013 

61/932,040 Chris Li, 
Jun Hwang 

Artemek SENSOR ENABLED MOBILE 
WEAPON COORDINATION 

Jan 27th, 2014 

 

4. Experience 

Chris Li completed his undergraduate research at the University of Southern California (Los 
Angeles), where he built hardware and software for autonomous robots. His primary emphasis is 
in distributed systems, which include work done in industry for Apple and eBay. His open source 
contributions include patches in Apache Hadoop as well as other widely downloaded projects 
(20k downloads). At Artemek, he is responsible for leading product development and 
engineering.  
 
Jun Hwang is an undergraduate student in computer science at Boise State University (Boise), 
where he previously researched innovative methods to detect protein markers for innovative 
methods for cellular regeneration. Although studies are within life sciences, his primary 
emphasis is product management which he has done work at Apple and eBay and as an 
strategy/M&A/corporate development analyst (FT) at The Walt Disney Company. At Artemek, 
he is responsible for leading business, finance/operations.  
 
Laurent Itti received his M.S. degree in Image Processing from the Ecole Nationale Superieure 
des Telecommunications (Paris, France) in 1994, and his Ph.D. in Computation and Neural 
Systems from Caltech (Pasadena, California) in 2000. He is a Professor of Computer Science, 
Psychology, and Neuroscience at the University of Southern California. Dr. Itti has co-authored 
over 200 publications in peer-reviewed journals, books and conferences, three patents, and 
several open-source neuromorphic vision software toolkits. 

5. Facilities  

The iLab is equipped with a CNC machine (Tormach 770), several 3D printers (including 
professional grade printers), hot-air soldering stations, conventional soldering stations, precision 
pick-and-place machine for assembly of circuit boards with tiny components (NeoDen TM-240A), 
solder reflow oven with precision-controlled temperature profile to finalize circuit board assembly, 
and a variety of robotics components. We use Altium Designer to design circuits, then outsource 
printing of circuit boards, and then use our lab equipment to assemble boards. We use SolidWorks 
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for 3D mechanical design, then transferring to HSMWorks for CNC planning, and finally either 
carving a part from a block of aluminum using our CNC or building it from plastic using our 3D 
printer. 

Artemek is equipped with an electronics lab, a 3D printer (MakerBot Replicator), and CAD 
software (SolidWorks, AutoCAD) for designing and manufacturing enclosures and boards 
(EAGLE). In addition, Artemek has relationships with outside design firms that specialize in 
industrial design, engineering testing, contract manufacturing, and RF testing. 

Shot detection has been tested thus far on public shooting ranges. We expect to continue live-fire 
testing on public shooting ranges, but any pilot testing or field testing will be done at the 
military’s preferred location. 

6. Organization 

 
Artemek is a registered Delaware LLC (in the process of changing to Delaware C Corp). Jun 
Hwang is responsible for business development/partnership outreach and all finance/business 
functions. He will ensure Artemek’s operations and finances. Chris Li is responsible for 
engineering. He will ensure the product does what is needed by customers and is on time. 
 
The University of Southern California’s iLab also has a subcontractor relationship with Artemek 
to carry out tasks that relate to their specialty. Dr. Laurent Itti is responsible for coordinating 
iLab work, which involves meeting with graduate students and the general approach to solving 
technical challenges. 
 
During the BAA, we plan on working closely together. The day-to-day engineering tasks will be 
carried out by Chris Li, Jun Hwang and graduate students in the iLab. These will involve sprint 
meetings (SCRUM) and planning sessions as well with various stake holders. On a monthly 
scale, we will meet to discuss timelines and the pace of the overall project tasks. As a former 
iLab researcher, Chris Li has done projects for the lab, and thus we anticipate a strong working 
relationship. 
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7. Project Management 

a. Management Plan: 

We plan to utilize the agile methodology for development in weeklong sprints. Each week we 
will meet with a stakeholder, which will be one of Artemek’s contacts in the military (active 
duty). They will help us prioritize our backlog of items to work on. Our team will then move 
items from the backlog into the sprint to work on. Artemek has daily standup meetings, which 
are open to iLab members as well. In our standup meetings, we quickly go over what we’ve 
done, what we’re going to do, and any blockers or impediments. This lasts until the end of the 
sprint, where we host a sprint demo and retrospective, where we can go over what we 
accomplished and talk about how to improve. 
 
The core team, which is composed of iLab personnel working on the project and Artemek 
employees, will meet in person at least once a month for the duration of the project. In the early 
phases, Artemek will do much of its development in the iLab while we finalize our hardware. 
We will synchronize files and documents through Google Drive (or another enterprise cloud 
storage), and financials will be shared quarterly during Artemek all-hands meetings. 
 
Artemek’s management team also consists of its advisory board, which includes Bob Gourley, 
former CTO of the DIA; Bob Flores, former CTO of the CIA; Courtlandt Gates, former CEO of 
Clearwater Analytics; and Andrew Rogers, Co-founder, and CTO of Space Curve.  
 

Brief Resumes 
 

Laurent Itti (USC) 
Education 
Ph.D, California Institute of Technology, Pasadena, California 
M.S., Ecole Nationale Supérieure des Télécommunications, Paris, France 
Mathématiques Supérieures et Spéciales M', Tours, France 
 
Experience 
2013 – present   
Professor of Computer Science, University of Southern California, Los Angeles 
 
2006 – 2013   
Associate Professor of Computer Science, University of Southern California, Los Angeles 
 
2000 – 2006    
Assistant Professor of Computer Science, University of Southern California, Los Angeles 
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2002 – present   
Voting faculty member, USC Neuroscience Graduate Program, Los Angeles  
 
2001 – 2002   
Faculty member, USC Neuroscience Graduate Program, Los Angeles 
 
2000 – present   
Adjunct assistant professor of Psychology, USC, Los Angeles 
 
2000 – 2000  
Postdoc in Neuroimaging Research, Harbor-UCLA Medical Center, Torrance, California 
 
1993 - 1998 
Neuroimaging Research Associate, Harbor-UCLA Medical Center, Torrance, California  
 

Chris Li (Artemek) 
Education 
B.S., Electrical Engineering University of Southern California, Los Angeles 
 
Experience 
2013 – 2014 
Hadoop Platform Engineer, eBay Inc., Bellevue, Washington 
 
2012 – 2012 
OTA/Antenna Design Engineer (Intern), Apple Inc., Cupertino, California 
 
2011 – 2013  
Undergraduate Researcher, University of Southern California iLab, Los Angeles, California 
 

Jun Hwang (Artemek) 
 
Education 
B.A. Computer Science (incomplete - on hold), Boise State University, Boise, Idaho 
 
Experience 
2013 – 2013  
Product Manager (Intern), eBay Inc., San Jose, California 
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2012 – 2012  
Product Manager (Intern), Apple Inc., Cupertino, California 
 
2011 – 2012  
Analyst -Strategy & Business Development, The Walt Disney Company | Disney Consumer 
Product, Glendale, California 
 
2011 – 2011  
Quantitative Analyst (Intern), Standard & Poor’s | S&P Capital IQ, New York City, New York 

b. Schedule 

 

Fig 8: Gantt chart showing expected times for tasks in each phase. The MS Project mpp file is included in the 
submission. 

Milestones 

Phase I + 2 months: AHRS running on off-the-shelf hardware and transmitting data to remote 
computer, demo-able product 

Phase I + 5 months: 1. Custom hardware completed and running shot detection, transmitting data 
remotely to 2. user-facing software which helps commanders visualize data 
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Phase I end (+8 months): Culminates in a pilot test for the military, demonstrating 3D orientation 
running on commodity hardware transmitted across the network in a controlled environment. 

Phase II + 3 months: Custom hardware adapted to use existing military infrastructure. Feature 
data recorded. 

Phase II + 5 months: BOM finalized and first hardware product design completed and ready for 
manufacture. Feature extraction completed. 

Phase II + 8 months: Antenna testing completed and validated. Feature classification via Naive 
Bayes completed. 

Phase II + 10 months: Small scale production complete. Feature classification via Dynamic 
Bayesian Networks completed. 

Phase II end (+12 months): Culminates in a field test for the military, demonstrating the product 
in real operating environments using real communication infrastructure. 

Phase III + 2 months: User facing software accepts data from off-the-shelf devices. Multi-sensor 
insights can do basic triangulation. 

Phase III + 5 months: Custom devices developed for pilot testing, multi-sensor insights working 
at the squad level with Dynamic Bayesian Networks. 

Phase III end (+8 months): Pilot test for the military, includes multi-sensor insights at the squad 
and company level. The small arms sensor from Phase II ready for field deployment. 
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f.  BAA Technical Focus Area Addressed: Ground Systems 

h. Technical POC 1: 
Mr. Li, Chris 
University of Southern California, Hedco Neuroscience Building, 3641 Watt Way Los Angeles, 
CA 90089-2520 
chris@artemek.com 

Technical POC 2: 
Mr. Hwang, Jun 
University of Southern California, Hedco Neuroscience Building, 3641 Watt Way Los Angeles, 
CA 90089-2520 
jun@artemek.com 

i. Administrative POC:  
Mr. Hwang, Jun 
University of Southern California, Hedco Neuroscience Building, 3641 Watt Way Los Angeles, 
CA 90089-2520 
jun@artemek.com 

i.  Award instrument requested: Grant 

j.  Place(s) and period(s) of performance: 
Research done at University of Southern California iLab and Artemek 
Phase I: Aug 16th 2014 – Apr 15th 2015 
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Phase II: 4/15/15 – 4/15/16 
Phase III: 4/16/16 – 12/16/17 

k. Total proposed cost separated by basic award and option(s) (if any): 
Phase I: $168,200 (grant) 
Phase II (option): $256,800(grant) 
Phase III (option): $171,200 (grant) 

l.  Name, address, and telephone number of the proposer’s cognizant Defense Contract 
Management Agency (DCMA) administration office (if known): n/a 

n. (14) Name, address, and telephone number of the proposer’s cognizant Defense Contract 
 Audit: n/a 

o. Agency (DCAA) audit office (if known): n/a  
    (15) Date proposal was prepared: Jan 9 2014 

p. (16) DUNS number: 079252316 
    (17) TIN number: 46-4474438 
    (18) Cage Code: 72YZ2 
q. (19) Subcontractor Information; and 
 
r. (20) Proposal validity period: 180 days 
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Section II. Detailed Cost Proposal 

1. Cost Proposal 

 Phase I (8 mo) Phase II (12 mo) Phase III (8 mo) 

Personnel    

Mr. Chris Li $24,000 $36,000 $24,000 

Mr. Jun Hwang $24,000 $36,000 $24,000 

    

Fringe Benefits    

Mr. Chris Li $1,600 $2,400 $1,600 

Mr. Jun Hwang $1,600 $2,400 $1,600 

    

Equipment    

2x Precalibrated IMU $9,000   

    

Travel    

Domestic Travel $2,000 $2,000 $2,000 

    

Participant Support Costs    

Stipends $2,000 $2,000 $2,000 

Travel $2,000 $2,000 $2,000 

    

Other Costs    

Materials and Supplies $2,000 $6,000 $8,000 

Consultant Services $4,000 $24,000 $10,000 

Subcontract Costs (iLab) $96,000 $144,000 $96,000 
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Total Cost to Agency $168,200 $256,800 $171,200 
 

2. Cost Justification 
 
Personnel 
 
Personnel costs were calculated for a base salary of $3000/month each for Mr. Jun Hwang and 
Mr. Chris Li.  
 
Fringe Benefits 
 
Fringe benefits cover health insurance costs at $200 per person, per month. 
 
Participant/trainee Costs 
 
In order to cover domestic travel for military members whom we test our devices on, we request 
$4000 per phase for their flights, lodging, meals, and misc fees. Bringing in service members 
allows us to better focus our product designs and features for their needs. 
 
Travel Costs 
 
Artemek will fly to various locations for conferences and meetings from Los Angeles frequently, 
including: the greater Washington D.C. metro area, Fayetteville, North Carolina (Fort Bragg 
where JSOC, USAOC, FORSCOM resides), Tampa, Florida (MacDill Air Force Base where 
USSOCOM and USCENTCOM resides), Naval Amphibious Base Coronado and Marine Corps 
Base Camp Lejeune (where MARSOC resides). 
 
Consultant Services 
 
Artemek outsources work (such as industrial design, hardware testing, and manufacturing) to 
other design agencies and CMs. 
 

3. Subcontractor Cost Proposal and Justification 
Attached on next page. 


